SAFEN: SAFE Energy Carriers

2024-02-08 H2Cluster - H2 Market Meetup

safetec Vysus Group DNV **p**roactima **GEXCON** equinor 🐙 Gen₂ Energy origin 🐜 vår energi >> GASSCO \mathbf{m} YARA energy AKER HORIZONS Swagelok HYDS Direktoratet for samfunnssikkerhet Swagelok Norway og beredskap **RIVM** National Institute for Public Health Siøfartsdirektoratet and the Environment Norwegian Maritime Authority Ministry of Health, Welfare and Sport

Agenda

1. SAFEN project overview (Thomas Welte)

2. SAFEN results (Ingar Fossan)

SAFEN Project Overview

SAFEN Joint Industry Project (JIP)

Status:	JIP project started up in Q1 2022, Phase 2 started in Q3 2023
Schedule:	Phase 1 (1.5 years) + Phase 2 (2.5 years)
Funding:	Industry partners and consultancies (in- kind)
Project owner:	Safetec
Partners:	Consultancies, Authorities, Energy

companies /Asset owners

SAFETY FIRST AMMONIA

Closing knowledge gaps, sharing learnings and developing risk-based methodologies for hydrogen, ammonia and CCS facilities

SAFEN partners

Swagelok Norway

Safety challenges in the hydrogen, ammonia and CCS value chain

Maritime

Need to prove that alternative solution is as safe as conventional technology

Land based production facilities Storage of large amounts of H_2 , NH_3 and CO_2

Loading, bunkering and refuelling operations High transfer rates Human operations

SAFEN will deliver the basis for assessing what is safe enough!

SAFEN Main results and impact

SAFE∩**₽**

SAFEN and **HICON**

 Safetec has been granted funding from the Research Council of Norway for the proposed innovation project "HICON – Hydrogen Ignition CONtrol"

HJEM NYHETER OG PRESSEMELDINGER 216 MILLIONER TIL FORSKNING PÅ FORNYBAR ENERGI

216 millioner til forskning på fornybar energi

Forskningsrådet investerer i 25 nye prosjekter innen fornybar energiproduksjon, energibruk og kraftsystemet. Alle prosjektene ledes av bedrifter.

PRESSEMELDING | PUBLISERT 18. DES 2023

216 millioner til forskning på fornybar energi (forskningsradet.no)

Prosjek

DISSE FÅR STØTTE:

Bedrift	Prosjekttittel	Innstilt beløp (i 1000)	Fylke	Kom- mune
SAFETEC NOR- DIC AS	Hydrogen Ignition CONtrol	6 450	Trøndelag	Trond- heim

SAFEN Phase 2 project structure

 Safetec has been granted funding from the Research Council of Norway for the proposed innovation project "HICON – Hydrogen Ignition CONtrol"

SAFEN Results

SAFEN models

- Storage tanks
 - Simple LoC model with guidelines
- Process equipment
 - New LoC model
- Transfer operations
 - SAFEN support further development of new RIVM model
- Ignition probability models
 - Hydrogen
 - Ammonia (on-going)

Storage tank failure

Many identical items

Containerized storage solutions (permanent or mobile)

Transport modules

What is the frequency for rupture scenarios for such a design, can we extrapolate from existing models; 63 tanks $\cdot \times 10^{-y}$ ruptures per tank/year?

It is about operation and not about technical integrity!

SAFE∩*≢*

Which failure mechanisms count?

SAFE∩**₽**

SAFEN Ignition model

- The properties of the ignition control barrier matters
 - type of ignition sources
 - isolation of equipment
 - detection
 - etc
- The size of the combustible cloud play a role the likelihood for exposure to a live ignition source
- Our hypothesis therefore that we should develop a model in line with the rational for MISOF model HC: the ignition probability is the product of the probability for exposure and the probability for ignition given exposure
- But we need to include parameters reflecting
 - Ignition by hot surfaces
 - Ignition by electrostatic discharges
 - · Ignition by corona discharges
 - Adiabatic compression and shock waves(diffusion ignition)
 - Ignition of LH2 releases in/onto water (not implemented yet)

- **P(I given E)** *Objects intended for explosive atmospheres, e.g.*
- Faulty rotating equipment
- Faulty electrical equipment
- Other (unknowns) including immediate ignition

P(l given E) *Objects NOT intended for explosive atmospheres, e.g.*

- •Gas turbine air intake
- Vehicles/engines
- Hot work
- Non-Ex equipment

P(E) Exposure probability model

SAFEN

SAFEN H2 ignition probability model

SAFEN

Small H2 fuelling station with 100 m3 processing area - all Ex equipment

Interested to learn more about SAFEN, and how you can benefit from the project?

Thomas Welte

Principal Safetey Adviser

47 410 45 376

Y thomas.welte@safetec.no

Ingar Fossan

Chief Adviser

- **** +47 924 38 204
- ➤ ingar.fossan@safetec.no

